Check out a short tutorial for a ROS-Driver for Basler Cameras to publish images from the cam. Supported are Basler cameras with USB 3.0 and GigE and also the dart cameras. It is developed by Magazino GmbH.
developed by Magazino GmbH, using the pylon Software Camera Suite by Basler AG, written for the ROS Wiki
This package offers many functions of the Basler-pylon API inside the ROS-Framwork.
The package supports Baslers USB 3.0, GigE as well as the DART cameras.
Images can continuously be published over _ /image_raw or the /image_rect _ topic. The latter just in case the intrinsic calibration matrices are provided through the camera_info_url parameter.
The camera-characteristic parameter such as hight, width, projection matrices and camera_frame were published over the _ /camera_info _ topic. Furthermore an action-based image grabbing with desired exposure, gain, gamma and / or brightness is provided. Hence one can grab a sequence of images with above target settings as well as a single image.
Adapting camera's settings regarding binning (in x and y direction), exposure, gain, gamma and brightness can be done using provided _ set_* _ services. These changes effect the continuous image acquisition and hence the images provided through the image topics.
The default node operates in Software-Trigger Mode. This means that the image acquisition is triggered with a certain rate and the camera is not running in the continuous mode.
The package opens either a predefined camera (using a given 'device_user_id' parameter) or, if no camera id is predefined the first camera device it can find.
The package has been tested for ROS-Indigo. For other ROS versions, please replace 'indigo' with your desired ROS-Version in the following install instructions.
The pylon_camera-pkg requires the pylonSDK to be installed on your system. In order to build the package, you need to configure rosdep (i.e. the ROS command-line tool for checking and installing system dependencies for ROS packages) such that it knows how to resolve this dependency. This can be achived by executing the following commands:
sudo sh -c 'echo "yaml https://raw.githubusercontent.com/magazino/pylon\_camera/indigo-devel/rosdep/pylon\_sdk.yaml"; > /etc/ros/rosdep/sources.list.d/15-plyon_camera.list'
rosdep update
Then, clone the pylon_camera-pkg, and the camera_control_msgs-pkg and install the pylon SDK in your catkin_ws:
cd ~/catkin_ws/src/ && git clone https://github.com/magazino/pylon\_camera.git && git clone https://github.com/magazino/camera\_control\_msgs.git
rosdep install --from-paths . --ignore-src --rosdistro=$ROS_DISTRO -y
Build the pylon_camera package as you would build a standard ROS-package unsing p.e.
cd ~/catkin_ws && catkin_make
All parameters are listed in the default config file: config/default.yaml
- camera_frame
- device_user_id
- camera_info_url
The CameraInfo URL (Uniform Resource Locator) where the optional intrinsic camera calibration matrices are stored. This URL string will be parsed from the CameraInfoManager:
- binning_x & binning_y
- frame_rate
The desired publisher frame rate if listening to the topics. This parameter can only be set once at start-up. Calling the GrabImages-Action can result in a higher frame rate.
The following settings do NOT have to be set. Each camera has default values which provide an automatic image adjustment resulting in valid images
- exposure
- gain
- gamma
- brightness
- brightness_continuous
Only relevant, if 'brightness' is set: The brightness_continuous flag controls the auto brightness function. If it is set to false, the brightness will only be reached once. Hence changing light conditions lead to changing brightness values. If it is set to true, the given brightness will be reached continuously, trying to adapt to changing light conditions. This is only possible for values in the possible auto range of the pylon API which is e.g. [50 - 205] for acA2500-14um and acA1920-40gm
- exposure_auto & gain_auto
Only relevant, if 'brightness' is set: If the camera should try to reach and / or keep the brightness, hence adapting to changing light conditions, at least one of the following flags must be set. If both are set, the interface will use the profile that tries to keep the gain at minimum to reduce white noise. The exposure_auto flag indicates, that the desired brightness will be reached by adapting the exposure time. The gain_auto flag indicates, that the desired brightness will be reached by adapting the gain.
- gige/mtu_size
- gige/inter_pkg_delay
The pylon_camera_node can be started over the launch file which includes a config file with desired parameters as frame rate or exposure time
roslaunch pylon_camera pylon_camera_node.launch
or
rosrun pylon_camera pylon_camera_node
Images were only published if another node connects to the image topic. The published images can be seen using the image_view node from the image_pipeline stack:
rosrun image_view image_view image:=/pylon_camera_node/image_raw
Please provide your qustions via http://answers.ros.org/questions/ and tag them with 'pylon_camera'
Want to comment this ...
Show more